Renal plasticity in response to feeding in the Burmese python, Python molurus bivittatus.
نویسندگان
چکیده
Burmese pythons are sit-and-wait predators that are well adapted to go long periods without food, yet subsequently consume and digest single meals that can exceed their body weight. These large feeding events result in a dramatic alkaline tide that is compensated by a hypoventilatory response that normalizes plasma pH; however, little is known regarding how plasma HCO3(-) is lowered in the days post-feeding. The current study demonstrated that Burmese pythons contain the cellular machinery for renal acid-base compensation and actively remodel the kidney to limit HCO3(-) reabsorption in the post-feeding period. After being fed a 25% body weight meal plasma total CO2 was elevated by 1.5-fold after 1 day, but returned to control concentrations by 4 days post-feeding (d pf). Gene expression analysis was used to verify the presence of carbonic anhydrase (CA) II, IV and XIII, Na(+) H(+) exchanger 3 (NHE3), the Na(+) HCO3(-) co-transporter (NBC) and V-type ATPase. CA IV expression was significantly down-regulated at 3 dpf versus fasted controls. This was supported by activity analysis that showed a significant decrease in the amount of GPI-linked CA activity in isolated kidney membranes at 3 dpf versus fasted controls. In addition, V-type ATPase activity was significantly up-regulated at 3 dpf; no change in gene expression was observed. Both CA II and NHE3 expression was up-regulated at 3 dpf, which may be related to post-prandial ion balance. These results suggest that Burmese pythons actively remodel their kidney after feeding, which would in part benefit renal HCO3(-) clearance.
منابع مشابه
Acetaminophen as an Oral Toxicant for Nile Monitor Lizards (Varanus niloticus) and Burmese Pythons (Python molurus bivittatus)
Context. Invasive species are a growing global problem. Biological invasions can result in numerous harmful impacts on local ecologies, and non-native herpetofauna are frequently ignored. Nile monitor lizards (Varanus niloticus) and Burmese pythons (Pythonmolurus bivittatus, recently reassessed asPython bivittatus bivittatus), have become established in southern Florida. Both are large, semi-aq...
متن کاملRapid Microsatellite Marker Development Using Next Generation Pyrosequencing to Inform Invasive Burmese Python—Python molurus bivittatus—Management
Invasive species represent an increasing threat to native ecosystems, harming indigenous taxa through predation, habitat modification, cross-species hybridization and alteration of ecosystem processes. Additionally, high economic costs are associated with environmental damage, restoration and control measures. The Burmese python, Python molurus bivittatus, is one of the most notable invasive sp...
متن کاملDetecting an elusive invasive species: a diagnostic PCR to detect Burmese python in Florida waters and an assessment of persistence of environmental DNA.
Recent studies have demonstrated that detection of environmental DNA (eDNA) from aquatic vertebrates in water bodies is possible. The Burmese python, Python bivittatus, is a semi-aquatic, invasive species in Florida where its elusive nature and cryptic coloration make its detection difficult. Our goal was to develop a diagnostic PCR to detect P. bivittatus from water-borne eDNA, which could ass...
متن کاملDouble valvular insufficiency in a Burmese python (Python molurus bivittatus, Linnaeus, 1758) suffering from concomitant bacterial pneumonia.
Ultrasonography, and, to a lesser extent, echocardiography are now well-established, noninvasive, and painless diagnostic tools in herpetologic medicine. Various cardiac lesions have been previously described in reptiles, but valvulopathy is rarely documented in these animals and, consequently, is poorly understood. In this report, sinoatrial and atrioventricular insufficiencies were diagnosed ...
متن کاملStructural flexibility of the intestine of Burmese python in response to feeding.
The small intestine of Burmese pythons, Python molurus bivittatus, undergoes a remarkable size increase shortly after feeding. We studied the dynamics, reversibility and repeatability of organ size changes using noninvasive imaging techniques. We employed light and electron microscopy, flow cytometry and immunohistology to study the cytological mechanisms that drive the size changes of the smal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comparative biochemistry and physiology. Part A, Molecular & integrative physiology
دوره 188 شماره
صفحات -
تاریخ انتشار 2015